วารสารวิชาการเทคโนโลยีอุตสาหกรรม (J. Ind. Tech.) อยู่ในฐานข้อมูล TCI กลุ่ม 2 (2563) มีค่า JIF = 0.094 | The Journal of Industrial Technology (J. Ind. Tech.) is indexed in TCI Tier 2 (2020) with impact factor, JTIF 0.094

Comparison of Selection and Mutation in Genetic Algorithms for Examination Schedule Problem
Type Of : Academic Manuscript
Type : Science
The purpose of this study is to present the comparison of selection and mutation in genetic algorithms to identify the most accurate parameter of examination schedule problem. Which includes 1) The group of students studying in the same course must take the same exam. 2) A student will have to take 1 examination at same time. 3) The number of students for each examination must not exceed the class capacity. 4) A proctor cannot supervise more than two sessions in the same day. 5) No student should have examinations on consecutive sessions. This study examined the selection based on three methods: Roulette Wheel Selection, Ranking Selection, and Tournament Selection. Similarly, three different methods were employed for mutation namely Swap Mutation, Insertion Mutation, and Inversion Mutation. In addition, the study investigated the most accurate parameter to determine the result by adjusting the probability of mutation, size of population, and the number of generations in the experiment. The result demonstrated that the most accurate parameter was from Tournament Selection and Swap Mutation where the probability of mutation is 75 %. The results showed that the Fitness Function average was 6,168 from 7,350. The experiment also revealed that the number of generations that provided the highest average Fitness Function was 365 generations.
Date12/09/2019 192

บทความใกล้เคียง

Get alert for journal's news

Get alert for journal's news. You can recieve journal up-to-date information by giving your email to us.